New Trends in Image Restoration based on Artificial Intelligent Models: Analytical Study

Authors

  • S. N. Abed Informatics Institute for Postgraduate Studies, Iraqi Commission for Computers and Informatics, Baghdad, Iraq
  • A. Mahmoud Al-Jawher Department of Communication Engineering, College of Engineering, Uruk University, Baghdad, Iraq.

Image restoration is a fundamental problem in low-level vision with applications in photography, surveillance, and archival imaging. This review synthesizes deep learning–based advances from 2018–2025, covering CNN (Convolutional Neural Network), GAN (Generative Adversarial Network), and Transformer families. This paper presents a unified taxonomy by degradation type (denoising, deblurring, super-resolution, dehazing/draining, JPEG deblocking, inpainting) and by model class. Representative architectures are summarized with their core design choices, training objectives, and computational characteristics. The comparison of common protocols, datasets (e.g., DIV2K, SIDD, GoPro, REDS), and metrics like PSNR (Peak Signal-to-Noise Ratio), SSIM (Structural Similarity Index), and LPIPS (Learned Perceptual Image Patch Similarity are given also). The review analyzes trade-offs between fidelity, perceptual quality, and efficiency. The identification of open challenges, robust generalization to real-world degradations, efficient high-resolution inference, reliable perceptual evaluation, and unified multi-degradation handling, and outline research opportunities are also considered. This review aims to serve as a unified reference for practitioners and researchers developing next-generation image restoration systems.

Keywords:

Image restoration, Denoising, Deblurring, Super-resolution, Inpainting, Compression artifact removal (JPEG deblocking), Dehazing/Deraining, ; Convolutional Neural Networks (CNN), Generative adversarial networks (GAN), Transformers

[1] Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., and Timofte, R. (2021). Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1833-1844).‏

[2] Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M. H., and Shao, L. (2020, August). Learning enriched features for real image restoration and enhancement. In European conference on computer vision (pp. 492-511). Cham: Springer International Publishing.‏

[3] Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., Yang, M. H., and Shao, L. (2021). Multi-stage progressive image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 14821-14831).‏

[4] Abdelhamed, A., Lin, S., and Brown, M. S. (2018). A high-quality denoising dataset for smartphone cameras. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1692-1700).‏

[5] Plötz, T., and Roth, S. (2017). Darmstadt Noise Dataset (DND) [Dataset and benchmarking website]. TU Darmstadt. Retrieved from https://noise.visinf.tu-darmstadt.de/

[6] Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. (2004). Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4), 600-612.‏

[7] Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O. (2018). The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 586-595).‏

[8] Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., and Yang, M. H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 5728-5739).‏

[9] Nah, S., Hyun Kim, T., and Mu Lee, K. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3883-3891).‏

[10] Nah, S., Timofte, R., Gu, S., Baik, S., Hong, S., Moon, G., ... and Mu Lee, K. (2019). Ntire 2019 challenge on video super-resolution: Methods and results. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 0-0).‏

[11] Conde, M. V., Choi, U. J., Burchi, M., and Timofte, R. (2022, October). Swin2sr: Swinv2 transformer for compressed image super-resolution and restoration. In European Conference on Computer Vision (pp. 669-687). Cham: Springer Nature Switzerland.‏

[12] Chen, L., Chu, X., Zhang, X., and Sun, J. (2022, October). Simple baselines for image restoration. In European conference on computer vision (pp. 17-33). Cham: Springer Nature Switzerland.‏

[13] Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., ... and Change Loy, C. (2018). Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European conference on computer vision (ECCV) workshops (pp. 0-0).‏

[14] Wang, X., Xie, L., Dong, C., and Shan, Y. (2021). Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 1905-1914).‏

[15] Chen, H., Wang, Y., Guo, T., Xu, C., Deng, Y., Liu, Z., ... and Gao, W. (2021). Pre-trained image processing transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 12299-12310).‏

[16] Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., and Li, H. (2022). Uformer: A general u-shaped transformer for image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 17683-17693).‏

[17] Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., and Fu, Y. (2018). Image super-resolution using very deep residual channel attention networks. In Proceedings of the European conference on computer vision (ECCV) (pp. 286-301).‏

[18] Haris, M., Shakhnarovich, G., and Ukita, N. (2018). Deep back-projection networks for super-resolution. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1664-1673).‏

[19] Zhang, K., Zuo, W., and Zhang, L. (2018). FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE Transactions on Image Processing, 27(9), 4608-4622.‏

[20] Anwar, S., and Barnes, N. (2019). Real image denoising with feature attention. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 3155-3164).‏

[21] Chen, L., Lu, X., Zhang, J., Chu, X., and Chen, C. (2021). Hinet: Half instance normalization network for image restoration. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 182-192).‏

[22] Kupyn, O., Martyniuk, T., Wu, J., and Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 8878-8887).‏

[23] Wang, X., Li, Y., Zhang, H., and Shan, Y. (2021). Towards real-world blind face restoration with generative facial prior. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9168-9178).‏

[24] Abdelhamed, A., Lin, S., and Brown, M. S. (2018). Smartphone Image Denoising Dataset (SIDD) [Dataset]. https://abdokamel.github.io/sidd/

[25] Plotz, T., and Roth, S. (2017). Benchmarking denoising algorithms with real photographs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1586-1595).‏

[26] Nah, S., Kim, T. H., and Lee, K. M. (2017). DeepDeblur_release [Dataset and code]. GitHub. https://github.com/SeungjunNah/DeepDeblur_release

[27] Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., and Lee, K. M. (2019). REDS dataset [Dataset]. Seungjun Nah (GitHub Pages). Retrieved from https://seungjunnah.github.io/Datasets/reds.html

[28] Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., and Mu Lee, K. (2019). Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops (pp. 0-0).‏

[29] Agustsson, E., and Timofte, R. (2017). DIV2K dataset [Dataset]. Computer Vision Lab, ETH Zürich. https://data.vision.ee.ethz.ch/cvl/DIV2K/

[30] Agustsson, E., and Timofte, R. (2017). Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 126-135).‏

[31] Chen, Z., Wu, Z., Zamfir, E., Zhang, K., Zhang, Y., Timofte, R., ... and Martinel, N. (2024). Ntire 2024 challenge on image super-resolution (x4): Methods and results. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 6108-6132).‏

[32] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... and Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.‏

[33] Katran, L. F., AlShemmary, E. N., and Al-Jawher, W. A. M. (2024). Integrating Swin Transformer with Fuzzy Gray Wolve Optimization for MRI Brain Tumor Classification. International Journal of Intelligent Engineering and Systems, 17(6).‏

[34] Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., and Huang, T. S. (2019). Free-form image inpainting with gated convolution. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 4471-4480).‏

[35] Singhal, N., Kadam, A., Kumar, P., Singh, H., & Thakur, A. (2025). STUDY OF RECENT IMAGE RESTORATION TECHNIQUES: A COMPREHENSIVE SURVEY. Jordanian Journal of Computers & Information Technology, 11(2).

[36] Liang, Z., Zhang, W., Ruan, R., Zhuang, P., & Li, C. (2022). GIFM: An image restoration method with generalized image formation model for poor visible conditions. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-16.

[37] Jiang, S., Hu, J., Zhi, X., Zhang, W., Wang, D., & Sun, X. (2023). Local adaptive prior-based image restoration method for space diffraction imaging systems. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-10.

[38] Yang, Z., Huang, J., Zhou, M., Zheng, N., & Zhao, F. (2024). Irvr: A general image restoration framework for visual recognition. IEEE Transactions on Multimedia, 26, 7012-7026.

[39] Chen, R., Guo, T., Mu, Y., & Shen, L. (2024). Learning Compact Hyperbolic Representations of Latent Space for Old Photo Restoration. IEEE Transactions on Image Processing, 33, 3578-3589.

[40] Kim, T., Shin, C., Lee, S., & Lee, S. (2021). Block-Attentive Subpixel Prediction Networks for Computationally Efficient Image Restoration. IEEE Access, 9, 90881-90895.

[41] Kong, S., Wang, W., Feng, X., & Jia, X. (2021). Deep red unfolding network for image restoration. IEEE Transactions on Image Processing, 31, 852-867.

[42] Perdios, D., Vonlanthen, M., Martinez, F., Arditi, M., & Thiran, J. P. (2021). CNN-based image reconstruction method for ultrafast ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 69(4), 1154-1168.

[43] Pan, Z., Yuan, F., Lei, J., Fang, Y., Shao, X., & Kwong, S. (2022). VCRNet: Visual compensation restoration network for no-reference image quality assessment. IEEE Transactions on Image Processing, 31, 1613-1627.

[44] Zhang, Q., Dong, Y., Yuan, Q., Song, M., & Yu, H. (2023). Combined deep priors with low-rank tensor factorization for hyperspectral image restoration. IEEE Geoscience and Remote Sensing Letters, 20, 1-5.

[45] Ke, J., Liu, K., Sun, Y., Xue, Y., Huang, J., Lu, Y., ... & Shen, D. (2023). Artifact detection and restoration in histology images with stain-style and structural preservation. IEEE Transactions on Medical Imaging, 42(12), 3487-3500.

[46] Pang, Y., Mao, J., He, L., Lin, H., & Qiang, Z. (2024). An improved face image restoration method based on denoising diffusion probabilistic models. IEEE Access, 12, 3581-3596.

[47] Zhang, X., & Feng, J. (2024). A Novel Blind Restoration Method for Miner Face Images Based on Improved GFP-GAN Model. IEEE Access.

[48] Yao, M., Xu, R., Guan, Y., Huang, J., & Xiong, Z. (2024). Neural degradation representation learning for all-in-one image restoration. IEEE transactions on image processing.

[49] Zhang, W., Zhao, W., Li, J., Zhuang, P., Sun, H., Xu, Y., & Li, C. (2024). CVANet: Cascaded visual attention network for single image super-resolution. Neural Networks, 170, 622-634.

[50] Deng, Z., Cai, Y., Chen, L., Gong, Z., Bao, Q., Yao, X., ... & Ma, L. (2022). Rformer: Transformer-based generative adversarial network for real fundus image restoration on a new clinical benchmark. IEEE Journal of Biomedical and Health Informatics, 26(9), 4645-4655.

[51] Tan, J., Chen, X., Wang, T., Zhang, K., Luo, W., & Cao, X. (2023). Blind face restoration for under-display camera via dictionary guided transformer. IEEE Transactions on Circuits and Systems for Video Technology, 34(6), 4914-4927.

[52] Zhang, Y., Yang, Q., Chandler, D. M., & Mou, X. (2024). Reference-based multi-stage progressive restoration for multi-degraded images. IEEE Transactions on Image Processing.

[53] Feng, X., Pei, W., Jia, Z., Chen, F., Zhang, D., & Lu, G. (2021). Deep-masking generative network: A unified framework for background restoration from superimposed images. IEEE Transactions on Image Processing, 30, 4867-4882.

[54] Yan, H., Zhang, Z., Xu, J., Wang, T., An, P., Wang, A., & Duan, Y. (2023). UW-CycleGAN: Model-driven CycleGAN for underwater image restoration. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-17.

[55] Yan, S., Chen, X., Wu, Z., Tan, M., & Yu, J. (2023). Hybrur: A hybrid physical-neural solution for unsupervised underwater image restoration. IEEE Transactions on image processing, 32, 5004-5016.

[56] Chang, Y., Yan, L., Chen, B., Zhong, S., & Tian, Y. (2020). Hyperspectral image restoration: Where does the low-rank property exist. IEEE Transactions on Geoscience and Remote Sensing, 59(8), 6869-6884.

[57] He, W., Yao, Q., Li, C., Yokoya, N., Zhao, Q., Zhang, H., & Zhang, L. (2020). Non-local meets global: An iterative paradigm for hyperspectral image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(4), 2089-2107.

[58] Berman, D., Levy, D., Avidan, S., & Treibitz, T. (2020). Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE transactions on pattern analysis and machine intelligence, 43(8), 2822-2837.

[59] Li, M., Zhang, Z., Chen, S., Xu, Z., Li, Q., Feng, H., & Chen, Y. (2023). Imaging simulation and learning-based image restoration for remote sensing time delay and integration cameras. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-17.

[60] Li, C., Yu, H., Zhou, S., Liu, Z., Guo, Y., Yin, X., & Zhang, W. (2023). Efficient dehazing method for outdoor and remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16, 4516-4528.

[61] Zhong, S., Liu, D., Zhao, X., Su, H., & Fan, B. (2024). RPIR: A Semi-Blind Unsupervised Learning Image Restoration Method for Optical Synthetic Aperture Imaging Systems with Co-Phase Errors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[62] Zhang, W., Zhuang, P., Sun, H. H., Li, G., Kwong, S., & Li, C. (2022). Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement. IEEE Transactions on Image Processing, 31, 3997-4010.

[63] Zhang, W., Zhou, L., Zhuang, P., Li, G., Pan, X., Zhao, W., & Li, C. (2023). Underwater image enhancement via weighted wavelet visual perception fusion. IEEE Transactions on Circuits and Systems for Video Technology, 34(4), 2469-2483.

[64] Waleed A Mahmoud, Afrah Loay Mohammed Rasheed “3D Image Denoising by Using 3D Multiwavelet” AL-Mustansiriya J. Sci, Volume 21, Issue 7, Pages 108-136, 2010.

[65] Waleed A Mahmoud, MS Abdulwahab, HN Al-Taai “The Determination of 3D Multiwavelet Transform” IJCCCFE, Vol.2, Issue 4. 2005.

[66] Maryam I Mousa Al-Khuzaay, Waleed A Mahmoud Al-Jawher “New Proposed Mixed Transforms: CAW and FAW and Their Application in Medical Image Classification” International Journal of Innovative Computing, Volume 13, Issue 1-2, Pages 15-21, 2022.

[67] AHM Al-Heladi, WA Mahmoud, HA Hali, AF Fadhel “Multispectral Image Fusion using Walidlet Transform” Advances in Modelling and Analysis B, Volume 52, Issue 1-2, Pages 1-20, 2009.

[68] W. A. Mahmoud, J J. Stephan and A. A. Razzak “Facial Expression Recognition Using Fast Walidlet Hybrid Transform” Journal port Science Researchو Volume3, No:1, Pages 59-69, 2020.

[69] Rasha Ali Dihin, Waleed A Mahmoud Al-Jawher, Ebtesam N AlShemmary “Diabetic retinopathy image classification using shift window transformer” International Journal of Innovative Computing, Volume 13, Issue 1-2, Pages 23-29, 2022.

[70] Ebtesam N. AlShemmary and Waleed A. Mahmoud Al-Jawher Rasha Ali Dihin “Automated Binary Classification of Diabetic Retinopathy by SWIN Transformer” Journal of Al-Qadisiyah for computer science and mathematics (JQCM), Volume 15, Issue 1, Pages 169-178, 2023.

[71] Rasha Ali Dihin, Ebtesam N AlShemmary, Waleed AM Al-Jawher “Wavelet-Attention Swin for Automatic Diabetic Retinopathy Classification” Baghdad Science Journal, Volume 21, Issue 8, Pages 2741-2741, 2024.

[72] Waleed A Mahmoud Al-Jawher “Swin Wavelet Transformer (SWT): Mixing Tokens with Wavelet and Multiwavelet Transforms” 27-6-2024, Journal Port Science Research, Volume 7, Issue 3, Pages 271-286, 2024.

[73] Waleed A Mahmoud Al-Jawher, Shaimaa A Shaaban “K-Mean Based Hyper-Metaheuristic Grey Wolf and Cuckoo Search Optimizers for Automatic MRI Medical Image Clustering” Journal 27-6- 2024, Port Science Research, Volume 7, Issue 3, Pages 109-120, 2024.

[74] Lamyaa Fahem Katran, Ebtesam N AlShemmary, Waleed AM Al-Jawher “A Review of Transformer Networks in MRI Image Classification” Al-Furat Journal of Innovations in Electronics and Computer Engineering, Vol. 3, Issue 2, PP. 148-162, 2024.

[75] Maryam I Al-Khuzaie, Waleed A Mahmoud Al-Jawher “Enhancing Medical Image Classification: A Deep Learning Perspective with Multi Wavelet Transform” Published: 2023-11-11, Journal Port Science Research, Vol. 6, Issue 4, PP. 365-373, 2023.

[76] Ali Akram Abdul-Kareem, Waleed Ameen Mahmoud Al-Jawher “Hybrid image encryption algorithm based on compressive sensing, gray wolf optimization, and chaos” Journal of Electronic Imaging, Volume 32, Issue 4, Pages 043038-043038, 2023.

[77] Ali Akram Abdul-Kareem, Waleed Ameen Mahmoud Al-Jawher, “WAM 3D discrete chaotic map for secure communication applications” International Journal of Innovative Computing, Volume 13, Issue 1-2, Pages 45-54, 2022.

[78] Qutaiba K Abed, Waleed A Mahmoud Al-Jawher “A Robust Image Encryption Scheme Based on Block Compressive Sensing and Wavelet Transform” International Journal of Innovative Computing, Volume 13, Issue 1-2, Pages 7-13, 2022.

[79] W. A. Mahmoud Al-Jawher, Zahraa A Hasan, Suha M. Hadi,” Time Domain Speech Scrambler Based on Particle Swarm Optimization” International Journal for Engineering and Information Sciences, Vol. 18, Issue 1, PP. 161-166, 2023.

[80] Saleem MR Taha, Walid A Mahmood "New techniques for Daubechies wavelets and multiwavelets implementation using quantum computing “2013, Journal Facta universitatis-series: Electronics and Energetics, Volume 26, Issue 2, Pages 145-156, 2013.

[81] Waleed A Mahmoud Al-Jawher, Sarah H Awad “A proposed brain tumor detection algorithm using Multi wavelet Transform (MWT)” Materials Today: Proceedings, Volume 65, Pages 2731-2737, 2022.

[82] Waleed Al-Jawhar, Abbas Hasan Kattoush, Sulaiman M Abbas, Ali T Shaheen “A high-performance parallel Radon based OFDM transceiver design and simulation” Digital Signal Processing, Volume 18, Issue, 6, Pages 907-918, 20008.

[83] W. A. Mahmoud & Z. J. M. Saleh “An Algorithm for Computing Multiwavelets &Inverse Transform Using an Over-Sampled Scheme of Pre& Post processing respectively” Engineering Journal, Vol. 10, Issue 2, PP. 270-288, 2004.

[84] Walid Amin Mahmoud, Raghad Aladdin Jassim” Image Denoising Using Hybrid Transforms” Engineering and Technology Journal, Volume 25, Issue 5, Pages 669-682, 2007.

[85] H. Al-Taai, Waleed A. Mahmoud & M. Abdulwahab “New fast method for computing multiwavelet coefficients from 1D up to 3D”, Proc. 1st Int. Conference on Digital Comm. & Comp. App., Jordan, PP. 412-422, 2007.

New Trends in Image Restoration based on Artificial Intelligent Models: Analytical Study. (2025). Journal Port Science Research, 8(4), 408-423. https://doi.org/10.36371/port.2025.4.10

How to Cite

New Trends in Image Restoration based on Artificial Intelligent Models: Analytical Study. (2025). Journal Port Science Research, 8(4), 408-423. https://doi.org/10.36371/port.2025.4.10